岩酱的生信学习笔记Day6(R包的安装和使用)

R包的安装和使用(以dplyr为例)

1.安装和加载R包

(1)镜像设置

代码语言:R
复制
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) #对应清华源

options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") #对应中科大源

(2)安装

代码语言:R
复制
install.packages("包")#安装包存在于CRAN网站用这个命令安装
BioManager::install("包")#Biocductor网站的安装包

(3)加载

library和require两个函数均可以加载,需要先安装后加载options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")
install.packages("dplyr")
library(dplyr)2.dplyr包的使用(五个基础函数)

(1)mutate()#新增列

代码语言:R
复制
mutate(test, new = Sepal.Length * Sepal.Width)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species new

1 5.1 3.5 1.4 0.2 setosa 17.85

2 4.9 3.0 1.4 0.2 setosa 14.70

3 7.0 3.2 4.7 1.4 versicolor 22.40

4 6.4 3.2 4.5 1.5 versicolor 20.48

5 6.3 3.3 6.0 2.5 virginica 20.79

6 5.8 2.7 5.1 1.9 virginica 15.66

(2)select()#按列筛选

  • 按列号筛选select(test,1)

    Sepal.Length

    1 5.1

    2 4.9

    51 7.0

    52 6.4

    101 6.3

    102 5.8

    select(test,c(1,5))

    Sepal.Length Species

    1 5.1 setosa

    2 4.9 setosa

    51 7.0 versicolor

    52 6.4 versicolor

    101 6.3 virginica

    102 5.8 virginica

    select(test,Sepal.Length)

    Sepal.Length

    1 5.1

    2 4.9

    51 7.0

    52 6.4

    101 6.3

    102 5.8select(test, Petal.Length, Petal.Width)

    Petal.Length Petal.Width

    1 1.4 0.2

    2 1.4 0.2

    51 4.7 1.4

    52 4.5 1.5

    101 6.0 2.5

    102 5.1 1.9

    vars <- c("Petal.Length", "Petal.Width")
    select(test, one_of(vars))

    Petal.Length Petal.Width

    1 1.4 0.2

    2 1.4 0.2

    51 4.7 1.4

    52 4.5 1.5

    101 6.0 2.5

    102 5.1 1.9(3)filter()筛选行filter(test, Species == "setosa")

    Sepal.Length Sepal.Width Petal.Length Petal.Width Species

    1 5.1 3.5 1.4 0.2 setosa

    2 4.9 3.0 1.4 0.2 setosa

    filter(test, Species == "setosa"&Sepal.Length > 5 )

    Sepal.Length Sepal.Width Petal.Length Petal.Width Species

    1 5.1 3.5 1.4 0.2 setosa

    filter(test, Species %in% c("setosa","versicolor"))

    Sepal.Length Sepal.Width Petal.Length Petal.Width Species

    1 5.1 3.5 1.4 0.2 setosa

    2 4.9 3.0 1.4 0.2 setosa

    3 7.0 3.2 4.7 1.4 versicolor

    4 6.4 3.2 4.5 1.5 versicolor(4)arrange(),按某1列或某几列对整个表格进行排序arrange(test, Sepal.Length)#默认从小到大排序

    Sepal.Length Sepal.Width Petal.Length Petal.Width Species

    1 4.9 3.0 1.4 0.2 setosa

    2 5.1 3.5 1.4 0.2 setosa

    3 5.8 2.7 5.1 1.9 virginica

    4 6.3 3.3 6.0 2.5 virginica

    5 6.4 3.2 4.5 1.5 versicolor

    6 7.0 3.2 4.7 1.4 versicolor

    arrange(test, desc(Sepal.Length))#用desc从大到小

    Sepal.Length Sepal.Width Petal.Length Petal.Width Species

    1 7.0 3.2 4.7 1.4 versicolor

    2 6.4 3.2 4.5 1.5 versicolor

    3 6.3 3.3 6.0 2.5 virginica

    4 5.8 2.7 5.1 1.9 virginica

    5 5.1 3.5 1.4 0.2 setosa

    6 4.9 3.0 1.4 0.2 setosa(5)summarise():汇总summarise(test, mean(Sepal.Length), sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差

    mean(Sepal.Length) sd(Sepal.Length)

    1 5.916667 0.8084965

    先按照Species分组,计算每组Sepal.Length的平均值和标准差

    group_by(test, Species)

    # A tibble: 6 x 5

    # Groups: Species [3]

    Sepal.Length Sepal.Width Petal.Length Petal.Width Species

    * <dbl> <dbl> <dbl> <dbl> <fct>

    1 5.1 3.5 1.4 0.2 setosa

    2 4.9 3 1.4 0.2 setosa

    3 7 3.2 4.7 1.4 versicolor

    4 6.4 3.2 4.5 1.5 versicolor

    5 6.3 3.3 6 2.5 virginica

    6 5.8 2.7 5.1 1.9 virginica

    summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))

    # A tibble: 3 x 3

    Species mean(Sepal.Length) sd(Sepal.Length)

    1 setosa 5 0.141

    2 versicolor 6.7 0.424

    3 virginica 6.05 0.354dplyr两个实用技能(1)管道操作 %>% (快捷键:ctr+shift+M)test %>%

    group_by(Species) %>%
    summarise(mean(Sepal.Length), sd(Sepal.Length))

    # A tibble: 3 x 3

    Species mean(Sepal.Length) sd(Sepal.Length)

    1 setosa 5 0.141

    2 versicolor 6.7 0.424

    3 virginica 6.05 0.354%>%向右依次执行命令

  • 按列名筛选

(2)count统计某列的unique值

代码语言:R
复制
count(test,Species)

# A tibble: 3 x 2

Species n

1 setosa 2

2 versicolor 2

3 virginica 2

dplyr处理关系数据

代码语言:R
复制
test1 <- data.frame(x = c('b','e','f','x'),
                z = c(&#34;A&#34;,&#34;B&#34;,&#34;C&#34;,&#39;D&#39;))

test1

x z

1 b A

2 e B

3 f C

4 x D

test2 <- data.frame(x = c('a','b','c','d','e','f'),
y = c(1,2,3,4,5,6))
test2

x y

1 a 1

2 b 2

3 c 3

4 d 4

5 e 5

6 f 6

(1)内连inner_join,取交集

代码语言:R
复制
inner_join(test1, test2, by = "x")

x z y

1 b A 2

2 e B 5

3 f C 6

(2)左连left_join

代码语言:R
复制
left_join(test1, test2, by = 'x')

x z y

1 b A 2

2 e B 5

3 f C 6

4 x D NA

left_join(test2, test1, by = 'x')

x y z

1 a 1 NA

2 b 2 A

3 c 3 NA

4 d 4 NA

5 e 5 B

6 f 6 C

(3)全连full_join

代码语言:R
复制
full_join( test1, test2, by = 'x')

x z y

1 b A 2

2 e B 5

3 f C 6

4 x D NA

5 a NA 1

6 c NA 3

7 d NA 4

(4)半连接:返回能够与y表匹配的x表所有记录semi_join

代码语言:R
复制
semi_join(x = test1, y = test2, by = 'x')

x z

1 b A

2 e B

3 f C

(5)反连接:返回无法与y表的所记录anti_join

代码语言:R
复制
anti_join(x = test2, y = test1, by = 'x')

x y

1 a 1

2 c 3

3 d 4

(6)简单合并

在相当于base包里的cbind()函数和rbind()函数;注意,bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数

代码语言:R
复制
test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))

test1

x y

1 1 10

2 2 20

3 3 30

4 4 40

test2 <- data.frame(x = c(5,6), y = c(50,60))
test2

x y

1 5 50

2 6 60

test3 <- data.frame(z = c(100,200,300,400))
test3

z

1 100

2 200

3 300

4 400

bind_rows(test1, test2)

x y

1 1 10

2 2 20

3 3 30

4 4 40

5 5 50

6 6 60

bind_cols(test1, test3)

x y z

1 1 10 100

2 2 20 200

3 3 30 300

4 4 40 400