[TextMatch框架] 生成词云

TextMatch

TextMatch is a semantic matching model library for QA & text search … It’s easy to train models and to export representation vectors.

[TextMatch框架] : 文本匹配/文本分类/文本embedding/文本聚类/文本检索(bow/ifidf/ngramtf-df/bert/albert/bm25/…/nn/gbdt/xgb/kmeans/dscan/faiss/….):https://github.com/MachineLP/TextMatch

代码语言:javascript
复制
git clone https://github.com/MachineLP/TextMatch
cd TextMatch
pip install -r requirements.txt
cd tests/tools_test
python generate_word_cloud.py

code:

代码语言:javascript
复制
# -*- coding:utf-8 -*-
# 网易云音乐 通过歌手ID,生成该歌手的词云
import requests
import sys
import re
import os
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import jieba
from PIL import Image
import numpy as np
from lxml import etree

headers = {
'Referer' :'http://music.163.com',
'Host' :'music.163.com',
'Accept' :'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,/;q=0.8',
'User-Agent':'Chrome/10'
}

得到某一首歌的歌词

def get_song_lyric(headers, lyric_url):
res = requests.request('GET', lyric_url, headers=headers)
if 'lrc' in res.json():
lyric = res.json()['lrc']['lyric']
new_lyric = re.sub(r'[\d:.[]]','',lyric)
return new_lyric
else:
return ''
print(res.json())

去掉停用词

def remove_stop_words(f):
stop_words = ['作词', '作曲', '编曲', 'Arranger', '录音', '混音', '人声', 'Vocal', '弦乐', 'Keyboard', '键盘', '编辑', '助理', 'Assistants', 'Mixing', 'Editing', 'Recording', '音乐', '制作', 'Producer', '发行', 'produced', 'and', 'distributed']
for stop_word in stop_words:
f = f.replace(stop_word, '')
return f

生成词云

def create_word_cloud(f):
print('根据词频,开始生成词云!')
f = remove_stop_words(f)
cut_text = " ".join(jieba.cut(f,cut_all=False, HMM=True))
wc = WordCloud(
font_path="./wc.ttf",
max_words=100,
width=2000,
height=1200,
)
print(cut_text)
wordcloud = wc.generate(cut_text)
# 写词云图片
wordcloud.to_file("wordcloud.jpg")
# 显示词云文件
plt.imshow(wordcloud)
plt.axis("off")
plt.show()

得到指定歌手页面 热门前50的歌曲ID,歌曲名

def get_songs(artist_id):
page_url = 'https://music.163.com/artist?id=' + artist_id
# 获取网页HTML
res = requests.request('GET', page_url, headers=headers)
# 用XPath解析 前50首热门歌曲
html = etree.HTML(res.text)
href_xpath = "//*[@id='hotsong-list']//a/@href"
name_xpath = "//*[@id='hotsong-list']//a/text()"
hrefs = html.xpath(href_xpath)
names = html.xpath(name_xpath)
# 设置热门歌曲的ID,歌曲名称
song_ids = []
song_names = []
for href, name in zip(hrefs, names):
song_ids.append(href[9:])
song_names.append(name)
print(href, ' ', name)
return song_ids, song_names

设置歌手ID,毛不易为12138269

artist_id = '12138269'
[song_ids, song_names] = get_songs(artist_id)

所有歌词

all_word = ''

获取每首歌歌词

for (song_id, song_name) in zip(song_ids, song_names):
# 歌词API URL
lyric_url = 'http://music.163.com/api/song/lyric?os=pc&id=' + song_id + '&lv=-1&kv=-1&tv=-1'
lyric = get_song_lyric(headers, lyric_url)
all_word = all_word + ' ' + lyric
print(song_name)

#根据词频 生成词云
create_word_cloud(all_word)