简读分享 | 王豫 编辑 | 赵晏浠
论文题目
LION: Latent Point Diffusion Models for 3D Shape Generation
论文摘要
去噪扩散模型(DDMs)在三维点云合成中取得了很好的效果。为了改进3D DDMs并使其对数字艺术家有用,人们需要(i)高生成质量,(ii)操作和应用的灵活性,如条件合成和形状插值,以及(iii)输出光滑表面或网格的能力。为此,作者引入层次潜点扩散模型(LION)来生成三维形状。LION被设置为具有层次潜空间的变分自编码器(VAE),该潜空间结合了全局形状潜表示和点结构潜空间。对于生成,作者在这些潜在空间中训练两个分层DDM。与直接在点云上操作的ddm相比,分层的VAE方法提高了性能,而点结构的隐藏层仍然非常适合基于DDM的建模。在实验上,LION在多个ShapeNet基准上实现了最先进的生成性能。此外,作者的VAE框架允许作者轻松地将LION用于不同的相关任务:LION擅长于多模态形状去噪和体素条件合成,它可以适用于文本和图像驱动的3D生成。作者还演示了形状自动编码和潜在形状插值,并使用现代表面重建技术增强了LION,以生成光滑的3D网格。由于其高质量的生成、灵活性和表面重建,作者希望LION能够为艺术家提供一个强大的工具来处理3D形状。
论文链接
https://arxiv.org/pdf/2202.03036v1.pdf