T1. 判断通过操作能否让字符串相等 I(Easy)
https://leetcode.cn/problems/check-if-strings-can-be-made-equal-with-operations-i/
题解(模拟)
因为只能交换距离偶数倍的位置,因此相当于比较两个字符串相同奇偶性下标上的元素是否相等。
- 写法 1:基于散列表
class Solution {
fun canBeEqual(s1: String, s2: String): Boolean {
return setOf(s1[0], s1[2]) == setOf(s2[0], s2[2]) && setOf(s1[1], s1[3]) == setOf(s2[1], s2[3])
}
}
- 写法 2:基于字符串
class Solution:
def checkStrings(self, s1: str, s2: str) -> bool:
return sorted(s1[0::2]) == sorted(s2[0::2]) and sorted(s1[1::2]) == sorted(s2[1::2])
复杂度分析:
- 时间复杂度:
- 空间复杂度:
T2. 判断通过操作能否让字符串相等 II(Medium)
https://leetcode.cn/problems/check-if-strings-can-be-made-equal-with-operations-ii/
题解(模拟)
同上,分别统计奇偶下标上的元素个数是否相等。
写法 1:基于计数;
class Solution {
fun checkStrings(s1: String, s2: String): Boolean {
val U = 26
val cnts = Array(2) { IntArray(U) }
for ((i, e) in s1.withIndex()) {
cnts[i % 2][e - 'a']++
}
for ((i, e) in s2.withIndex()) {
cnts[i % 2][e - 'a']--
}
return cnts[0].all {it == 0} && cnts[1].all {it == 0}
}
}
复杂度分析:
- 时间复杂度:
线性遍历时间与计数时间;
- 空间复杂度:
计数数组空间。
写法 2:基于字符串:
class Solution:
def checkStrings(self, s: str, t: str) -> bool:
return all(sorted(s[p::2]) == sorted(t[p::2]) for p in range(2))
复杂度分析:
- 时间复杂度:
排序时间;
- 空间复杂度:
构造字符串空间。
T3. 几乎唯一子数组的最大和(Medium)
https://leetcode.cn/problems/maximum-sum-of-almost-unique-subarray/
题解(滑动窗口 + 计数)
滑动窗口模板题,维护窗口中不同元素的种类数和总和:
class Solution {
fun maxSum(nums: List<Int>, m: Int, k: Int): Long {
var cnts = HashMap<Int, Int>()
var type = 0
var sum = 0L
var ret = 0L
for (j in nums.indices) {
// 滑入
cnts[nums[j]] = cnts.getOrDefault(nums[j], 0) + 1
if (1 == cnts[nums[j]]!!) type++
sum += nums[j]
// 滑出
if (j >= k) {
val i = j - k
cnts[nums[i]] = cnts[nums[i]]!! - 1
if (0 == cnts[nums[i]]) type --
sum -= nums[i]
}
// 记录
if (j >= k - 1 && type >= m) {
ret = max(ret, sum)
}
}
return ret
}
}
复杂度分析:
- 时间复杂度:
线性遍历时间;
- 空间复杂度:
散列表空间。
T4. 统计一个字符串的 k 子序列美丽值最大的数目(Hard)
https://leetcode.cn/problems/count-k-subsequences-of-a-string-with-maximum-beauty/
问题分析
- 问题目标: 求所有长为
的子序列中美丽值是最大值的子序列数目;
- 问题要件: 先计算长为
的子序列的最大美丽值,再计算满足美丽值是最大值的子序列方案数;
- 关键信息 1: 子序列要选择不重复的字母;
- 关键信息 2: 同一个字符在原字符串中的不同位置可以构造不同子序列;
- 核心变量:
是 字符
的出现次数,美丽值是子序列中字符的
之和;
- 边界情况: 既然子序列要选择不重复的字母,那么存在边界情况,当
> 字符串的字符种类数:那么一定不能构造
子序列,返回
。
题解一(暴力枚举 + 乘法原理)
最简单的做法,我们可以枚举所有可能的
子序列,并记录出现最大美丽值的方案数,怎么实现呢?
- 方法 1 - 考虑到子序列需要保留原字符串的顺序,直接的想法是枚举字符串中的每个下标
选和不选,但是时间复杂度是
显然不成立;
- 方法 2 - 事实上我们不需要从原字符串的角度枚举,而是可以从字符集的角度枚举,那样时间复杂度就可以用乘法原理来优化。比如说
a
的出现次数是
,而 b
的出现次数是
,那么所有 a
与 b
可以构造的子序列方案数就是 2 * 3 = 6
。
那么,方法会不会超时呢,我们来简单分析下:
由于字符集的大小
最多只有
个,那么子序列的方案数最多有
个,而由于
大于
的方案是不存在的,因此合法的方案数最多只有
约等于
。只要我们保证求解每个子问题的时间复杂度是
的话是可以通过的。
枚举实现:
class Solution {
fun countKSubsequencesWithMaxBeauty(s: String, k: Int): Int {
val MOD = 1000000007
// 计数
val cnts = HashMap<Char, Int>()
for (e in s) {
cnts[e] = cnts.getOrDefault(e, 0) + 1
}
val m = cnts.size
if (m < k) return 0 // 特判
// 枚举子序列
val keys = cnts.toList()
var maxCount = 0L
var maxF = 0
// 回溯
fun count(index: Int, size: Int, curF: Int, curCount: Long) {
// 终止条件
if (size == k) {
if (curF > maxF) {
maxF = curF
maxCount = curCount // 更新最大美丽值方案数
} else if (curF == maxF) {
maxCount = (maxCount + curCount) % MOD // 增加方案数
}
return
}
if (size + m - index < k) return // 剪枝(长度不够)
for (i in index until m) {
val (c, cnt) = keys[i]
count(i + 1, size + 1, curF + cnt, curCount * cnt % MOD /* 乘法原理 */)
}
}
count(0, 0, 0, 1)
return maxCount.toInt()
}
}
复杂度分析:
- 时间复杂度:
其中
为字符种类 ;
- 空间复杂度:
散列表空间与递归栈空间。
题解二(排序 + 贪心 + 乘法原理)
考虑
的边界情况:
显然需要选择
值最大的
个字母,如果存在
个字母的
等于最大值,那么存在
种方案。这说明我们没必要枚举所有字母的子序列: 由于子序列中的字符是不重复的,因此
子序列必然要选择
值最大的
个字母,我们可以将字母按照
倒序排序,优先取
更大的字母。
具体实现上:
我们将字母按照
分桶排序,如果桶内字母数量
小于等于
,那么桶内元素都需要选择,否则还要计算桶内元素选择
个的方案数:
- 选择桶内所有元素,方案数为
- 选择桶内部分元素,方案数为
其中涉及到幂运算,本质是倍增思想:
// 快速幂 x^n
private fun powM(a: Int, b: Int, mod: Int) : Long {
var x = a.toLong()
var n = b.toLong()
var ret = 1L
while (n > 0L) {
if (n % 2 == 1L) ret = ret * x % mod
x = x * x % mod
n /= 2
}
return ret
}
其中涉及到 组合数:
- 计算式:
// 组合数计算公式 O(k)
private fun comb(n: Int, k: Int, mod: Int) : Int {
var ret = 1L
for (i in 1 .. k) {
ret = ret * (n - i + 1) / i % mod
}
return ret.toInt()
}
- 递推式(杨辉三角):
// 递归 O(n^2) private fun comb(n: Int, k: Int, mod: Int) : Int { if (n == k) { return 1 } else if (k == 1) { return n } else { return (comb(n - 1, k - 1, mod) + comb(n - 1, k, mod)) % mod } }
// 迭代 O(n^2)
private fun comb(n: Int, k: Int, mod: Int) : Int {
val c = Array(n + 1) { IntArray(n + 1) }
for (i in 1 .. n) {
c[i][0] = 1
c[i][i] = 1
for (j in 1 until i) {
c[i][j] = (c[i-1][j] + c[i-1][j-1]) % mod
}
}
return c[n][k]
}
- 卢卡斯定理: 当问题规模很大,且模不太大时使用 Lucas 定理。
// 组合数计算公式
private fun comb(n: Long, k: Long, mod: Int) : Int {
var n = n
var ret = 1L
for (i in 1 .. k) {
ret = ret * n-- / i % mod
}
return ret.toInt()
}
// 卢卡斯定理
fun Lucas(n: Long, k: Long, mod: Int) : Long {
if (k == 0L) return 1L;
return (comb(n % mod, k % mod, mod) * Lucas(n / mod, k / mod, mod)) % mod;
}
完整代码:
class Solution {
fun countKSubsequencesWithMaxBeauty(s: String, k: Int): Int {
val MOD = 1000000007
// 计数
val cnts = HashMap<Char, Int>()
var maxCnt = 0
for (e in s) {
cnts[e] = cnts.getOrDefault(e, 0) + 1
maxCnt = max(maxCnt, cnts[e]!!)
}
val m = cnts.size
if (m < k) return 0 // 特判
// 有序集合
val map = TreeMap<Int, Int>() { c1, c2 ->
c2 - c1
}
// 二次频率
for ((_, c) in cnts) {
map[c] = map.getOrDefault(c, 0) + 1
}
val cntCnts = map.toList()
// println(cntCnts.joinToString())
// 构造方案
var ret = 1L
var leftK = k
for ((cnt, K) in cntCnts) {
if (K > leftK) {
ret = ret * powM(cnt, leftK, MOD) * comb(K, leftK, MOD) % MOD
} else {
ret = ret * powM(cnt, K, MOD) % MOD
}
leftK -= K
if (leftK <= 0) break
}
return ret.toInt()
}// 组合数计算公式 C_n^k private fun comb(n: Int, k: Int, mod: Int) : Int { if (n == k) { return 1 } else if (k == 1) { return n } else { return (comb(n - 1, k - 1, mod) + comb(n - 1, k, mod)) % mod } } // 快速幂 x^n private fun powM(x_: Int, n_: Int, mod: Int) : Long { var x = x_.toLong() var n = n_.toLong() var ret = 1L while (n > 0L) { if (n % 2 == 1L) ret = ret * x % mod x = x * x % mod n /= 2 } return ret }
}
Python 中组合数和幂运算可以很方便地使用库函数:
class Solution:
def countKSubsequencesWithMaxBeauty(self, s: str, k: int) -> int:
MOD = 10 ** 9 + 7
ans = 1
cnt = Counter(Counter(s).values())
for c, num in sorted(cnt.items(), reverse=True): # 二次计数
if num >= k:
return ans * pow(c, k, MOD) * comb(num, k) % MOD
ans *= pow(c, num, MOD)
k -= num
return 0
复杂度分析:
- 时间复杂度:
主要时间在枚举字符串的环节;
- 空间复杂度:
散列表空间。