腾讯云实验室——玩转 Jupyter Notebook.docx

Jupyter Notebook 是一个开源的 Web 应用程序,可以用来创建和共享包含动态代码、方程式、可视化及解释性文本的文档。其应用于包括:数据整理与转换,数值模拟,统计建模,机器学习等等。

安装 Jupyter Notebook

Jupyter Notebook 简介

Jupyter Notebook 是一个开源的 Web 应用程序,可以用来创建和共享包含动态代码、方程式、可视化及解释性文本的文档。

其应用于包括:数据整理与转换,数值模拟,统计建模,机器学习等等。

更多信息请见 官网

检查 Python 环境

CentOS 7.2 中默认集成了 Python 2.7,可以通过下面命令检查 Python 版本:

python --version

查看python版本

安装 pip

pip 是一个 Python 包管理工具,我们使用 yum 命令来安装该工具:

yum -y install python-pip

安装

使用下面命令升级 pip 到最新版本:

pip install --upgrade pip

升级

安装相关依赖

安装 Jupyter 过程中还需要其他一些依赖,我们使用以下命令安装他们:

yum -y groupinstall "Development Tools"

安装 tools

yum -y install python-devel

配置虚拟环境

安装 virtualenv

我们将为 Jupyter 创建一个独立的虚拟环境,与系统自带的 Python 隔离开来。为此,先安装 virtualenv 库:

pip install virtualenv

创建虚拟环境

创建一个专门的虚拟环境,并直接激活进入该环境:

virtualenv venv

source venv/bin/activate

使用 pip 安装 Jupyter

我们使用 pip 命令安装 Jupyter:

pip install jupyter

配置 Jupyter Notebook

建立项目目录

我们先为 Jupyter 相关文件准备一个目录:

mkdir /data/jupyter

cd /data/jupyter

再建立一个目录作为 Jupyter 运行的根目录:

mkdir /data/jupyter/root

准备密码密文

由于我们将以需要密码验证的模式启动 Jupyter,所以我们要预先生成所需的密码对应的密文。

生成密文

使用下面的命令,创建一个密文的密码:

python -c "import IPython;print IPython.lib.passwd()"

执行后需要输入并确认密码,然后程序会返回一个 'sha1:...' 的密文,我们接下来将会用到它。

以123为例

修改配置

生成配置文件

我们使用 --generate-config 来参数生成默认配置文件:

jupyter notebook --generate-config --allow-root

生成的配置文件在 /root/.jupyter/ 目录下

然后在配置文件最下方加入以下配置:

c.NotebookApp.ip = '*'

c.NotebookApp.allow_root = True

c.NotebookApp.open_browser = False

c.NotebookApp.port = 8888

c.NotebookApp.password = u'刚才生成的密文(sha:...)'

c.ContentsManager.root_dir = '/data/jupyter/root'

注意:如果浏览器出现验证失败Invalid credentials,请检查passwd这行

正确格式为:

c.NotebookApp.password = u'sha1:67c9e60bb8b6:9ffede0825894254b2e042ea597d771089e11aed'

如果出现报错99 尝试释放端口,或重启主机。修改上述passwd位置

其中:

c.NotebookApp.password 请将上一步中密文填入此项,包括 sha: 部分。

你也可以直接配置或使用 Nginx 将服务代理到 80 或 443 端口。

启动 Jupyter Notebook

直接启动

使用以下指令启动 Jupyter Notebook:

jupyter notebook

此时,访问 http://123.207.56.239:8888 即可进入 Jupyter 首页。

若出现上述页面,检查sha1的值

正常应显示如下:

创建 Notebook

进入【首页】首先需要输入前面步骤中设置的密码。

然后点击右侧的【 new 】,选择 Python2 新建一个 notebook,这时跳转至编辑界面。

现在我们可以看到 /data/jupyter/root/ 目录中出现了一个 Untitled.ipynb 文件,这就是我们刚刚新建的 Notebook 文件。我们建立的所有 Notebook 都将默认以该类型的文件格式保存。

后台运行

直接以 jupyter notebook 命令启动 Jupyter 的方式在连接断开时将会中断,所以我们需要让 Jupyter 服务在后台常驻。

先按下 Ctrl + C 并输入 y 停止 Jupyter 服务,然后执行以下命令:

nohup jupyter notebook > /data/jupyter/jupyter.log 2>&1 &

该命令将使得 Jupyter 在后台运行,并将日志写在 /data/jupyter/jupyter.log 文件中。

准备后续步骤的 Notebook

为了后面实验中实验室的步骤检查器能够更好的工作,此时我们使用以下命令预先创建几份 ipynb 文件:

cd /data/jupyter/root

cp Untitled.ipynb first.ipynb

cp Untitled.ipynb matplotlib.ipynb

cp Untitled.ipynb tensorflow.ipynb

rm -f Untitled.ipynb

使用 Jupyter Notebook

编辑界面

点击这里打开 first.ipynb 编辑界面。

Jupyter Notebook 的编辑界面主要由 工具栏 和 内容编辑区 构成。

下方编辑区,由 Cell 组成。每个 notebook 由多个 Cell 构成,每个 Cell 都可以有不同的用途。

Code Cell

新建的 notebook 中包含一个代码 Cell(Code Cell),以 [ ] 开头,在该类型的 Cell 中,可以输入任意代码并执行。如输入:

1 + 1

然后按下 Shift + Enter 键, Cell 中代码就会被执行,光标也会移动至下个新 Cell 中。我们接着输入:

print('Hello Jupyter')

再次按下 Shift + Enter ,可以看到这次没有出现 Out[..] 这样的文字。这是因为我们只打印出来了某些值,而没有返回任何的值。

按下 Ctrl + S 保存

Heading Cell *

新版本中已经没有独立的 Heading Cell,现在标题被整合在 Markdown Cell 之中。

如果我们想在顶部添加一个的标题。选中第一个 Cell,然后点击 Insert -> Insert Cell Above。

你会发现,文档顶部马上就出现了一个新的 Cell。点击在工具栏中 Cell 类型(默认为 Code),将其变成 Markdown。接着在 Cell 中写下:

# My First Notebook

然后按下 Shift + Enter 键,便可以看到生成了一行一级标题。

与 Markdown 语法相同,使用多个#将改变标题级别。

Markdown Cell

上一步中我们已经尝试了使用了 Markdown Cell。在该 Cell 中,除标题外其他语法同样支持。比如,我们在一个新的 Cell 中插入以下文本:

This is a **table**:

| Name | Value |

|:----:|:-----:|

|    A |     1 |

|    B |     2 |

|    C |     3 |

然后按下 Shift + Enter,即可渲染出相应内容。

高级用法 - HTML

Markdown Cell 中同样接受 HTML 代码。这样,你就可以实现更加丰富的样式及结构、添加图片等等。

例如,如果想在 notebook 中添加 Jupyter 的 logo,并且添加 2px 的黑色边框,放置在单元格左侧,可以这样编写:

<img src="http://jupyter.org/assets/nav_logo.svg" style="border: 2px solid black; float:left" />

然后按下 Shift + Enter,即可渲染出图片。

高级用法 - LaTex

Markdown Cell 还支持 LaTex 语法。在 Cell 中插入以下文本:

$$int_0^{+infty} x^2 dx$$

同样按下 Shift + Enter,即可渲染出公式。

导出

notebook 支持导出导出为 HTML、Markdown、PDF 等多种格式。

如点击 File -> Download as -> HTML(.html),即可下载到 HTML 版本的 notebook。

直接导出PDF  会报错,需要安装依赖

其中,导出 PDF 需要其他包的支持,我们需要使用以下命令安装这些依赖:

yum -y install pandoc texlive-*

注:直接导出 PDF 时 Jupyter 可能会忽略一些 Cell,建议先导出为 HTML,然后使用浏览器将其转为 PDF。

集成 Matplotlib(可选)

Matplotlib 是 Python 中最常用的可视化工具之一,可以非常方便地创建许多类型的 2D 图表和基本的 3D 图表。

安装 Matplotlib

我们使用 pip 来安装 Matplotlib:

pip install matplotlib

测试 Matplotlib

我们使用另一个 notebook (matplotlib.ipynb)来测试 Matplotlib。

打开 matplotlib.ipynb 编辑界面。

魔法命令

在第一个 Cell 中,我们插入并执行:

%matplotlib inline

这是指定 matplotlib 图表的显示方式的魔法命令。inline 表示将图表嵌入到 notebook 中。

测试

关于 Matplotlib 的使用请移步其官网。

在接下来 Cell 中,我们插入几个官方示例测试:

1.plot_bmh:

plot_bmh.py

from numpy.random import beta

import matplotlib.pyplot as plt

plt.style.use('bmh')

def plot_beta_hist(ax, a, b):

    ax.hist(beta(a, b, size=10000), histtype="stepfilled",

            bins=25, alpha=0.8, normed=True)

fig, ax = plt.subplots()

plot_beta_hist(ax, 10, 10)

plot_beta_hist(ax, 4, 12)

plot_beta_hist(ax, 50, 12)

plot_beta_hist(ax, 6, 55)

ax.set_title("'bmh' style sheet")

plt.show()

Shift + Enter 执行 Cell,即可看到绘制出的图像。

2.whats_new_99_mplot3d:

whats_new_99_mplot3d.py

import random

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import cm

from mpl_toolkits.mplot3d import Axes3D

X = np.arange(-5, 5, 0.25)

Y = np.arange(-5, 5, 0.25)

X, Y = np.meshgrid(X, Y)

R = np.sqrt(X**2 + Y**2)

Z = np.sin(R)

fig = plt.figure()

ax = Axes3D(fig)

ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.viridis)

plt.show()

同样执行 Cell,即可看到绘制出的图像。

动手试试

最后,我们来尝试绘制一个二次函数图像,你可以自行实现,也可以参考下面代码:

import matplotlib.pyplot as plt

import numpy as np

x = np.arange(-10, 11)

y = x**2

plt.plot(x, y)

plt.show()

搭配 TensorFlow(可选)

TensorFlow™ 是一个采用数据流图,用于数值计算的开源软件库。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。

TensorFlow 最初由 Google 大脑小组的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。

安装 TensorFlow

我们使用 pip 安装相关依赖及 Tensorflow

pip install protobuf

pip install tensorflow

测试 TensorFlow

关于 TensorFlow 的使用请移步其官网,这里只是测试其在 Jupiter 中是否可用。

点击这里打开 tensorflow.ipynb 编辑界面。

在 Cell 中加入以下代码(整理自官网 MNIST 教程):

示例代码:/tensorflow.py

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

# The MNIST Data

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# Regression

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

b = tf.Variable(tf.zeros([10]))

y = tf.nn.softmax(tf.matmul(x, W) + b)

# Training

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

train_step = tf.train.GradientDescentOptimizer(0.05).minimize(cross_entropy)

sess = tf.InteractiveSession()

tf.global_variables_initializer().run()

for _ in range(1000):

    batch_xs, batch_ys = mnist.train.next_batch(100)

    sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

# Evaluating

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

按下 Shift + Enter,学习过程结束后可以看到输出了准确率(92% 左右)。

实验到此结束

本实验取自腾讯云实验室,是手工照着实验室内容做的

如今部分源可能存在过期问题,可以在云+问答中补充