🤠 Wordcloud | 风中有朵雨做的'词云'哦!~

1写在前面

今天可算把key搞好了,不得不说🏥里手握生杀大权的人,都在自己的能力范围内尽可能的难为你。😂

我等小大夫也是很无奈,毕竟奔波霸霸波奔是要去抓唐僧的。🤐

好吧,今天是词云Wordcloud)教程,大家都说简单,但实际操作起来又有一些难度,一起试试吧。😋

2用到的包

代码语言:javascript
复制
rm(list = ls())
library(tidyverse)
library(tm)
library(wordcloud)

3示例数据

这里我准备好了2个文件用于绘图,首先是第一个文件,每行含有n个词汇。🤣

代码语言:javascript
复制
dataset <- read.delim("./wordcloud/dataset.txt", header=FALSE)

DT::datatable(dataset)


接着是第2个文件,代表dataset文件中每一行的label。🥸

代码语言:javascript
复制
dataset_labels <- read.delim("./wordcloud/labels.txt",header=FALSE)
dataset_labels <- dataset_labels[,1]
dataset_labels_p <- paste("class",dataset_labels,sep="_")
unique_labels <- unique(dataset_labels_p)

unique_labels

4数据初步整理

然后我们利用sapply函数把数据整理成list。😘

可能会有小伙伴问sapplylapply有什么区别呢!?😂

oksapply()函数与lapply()函数类似,但返回的是一个简化的对象,例如向量或矩阵。😜

如果应用函数的结果具有相同的长度和类型,则sapply()函数将返回一个向量。

如果结果具有不同的长度或类型,则sapply()函数将返回一个矩阵。😂

代码语言:javascript
复制
dataset_s <- sapply(unique_labels,function(label) list( dataset[dataset_labels_p %in% label,1] ) )

str(dataset_s)

5数据整理成Corpus

接着我们把上面整理好的list中每个元素都整理成一个单独的Corpus。🤩

代码语言:javascript
复制
dataset_corpus <- lapply(dataset_s, function(x) Corpus(VectorSource( toString(x) )))

然后再把Cporus合并成一个。🧐

代码语言:javascript
复制
dataset_corpus_all <- dataset_corpus

6去除部分词汇

修饰一下, 去除标点、数字、无用的词汇等等。😋

代码语言:javascript
复制
dataset_corpus_all <- lapply(dataset_corpus_all, tm_map, removePunctuation)
dataset_corpus_all <- lapply(dataset_corpus_all, tm_map, removeNumbers)
dataset_corpus_all <- lapply(dataset_corpus_all, tm_map, function(x) removeWords(x,stopwords("english")))

words_to_remove <- c("said","from","what","told","over","more","other","have",
"last","with","this","that","such","when","been","says",
"will","also","where","why","would","today")

dataset_corpus_all <- lapply(dataset_corpus_all, tm_map, function(x)removeWords(x, words_to_remove))

7计算term matrix并去除部分词汇

代码语言:javascript
复制
document_tm <- TermDocumentMatrix(dataset_corpus_all)
document_tm_mat <- as.matrix(document_tm)
colnames(document_tm_mat) <- unique_labels
document_tm_clean <- removeSparseTerms(document_tm, 0.8)
document_tm_clean_mat <- as.matrix(document_tm_clean)
colnames(document_tm_clean_mat) <- unique_labels

去除长度小于4的term

index <- as.logical(sapply(rownames(document_tm_clean_mat), function(x) (nchar(x)>3) ))
document_tm_clean_mat_s <- document_tm_clean_mat[index,]

head(document_tm_clean_mat_s)

8可视化

8.1 展示前500个词汇

代码语言:javascript
复制
comparison.cloud(document_tm_clean_mat_s,
max.words=500,
random.order=F,
use.r.layout = F,
scale = c(10,0.4),
title.size=1.4,
title.bg.colors = "white"
)

8.2 展示前2000个词汇

代码语言:javascript
复制
comparison.cloud(document_tm_clean_mat_s,
max.words=2000,
random.order=F,
use.r.layout = T,
scale = c(6,0.4),
title.size=1.4,
title.bg.colors = "white"
)

8.3 展示前2000个common词汇

代码语言:javascript
复制
commonality.cloud(document_tm_clean_mat_s,
max.words=2000,
random.order=F)