1+1>2?当云数据完整性审计遇到可搜索加密
作为数据安全的重要研究方向,可搜索加密和云数据完整性审计技术近年来得到了学术界广泛的关注。两种技术相结合会不会产生1+1大于2的效果?本文将介绍发表在IEEE TDSC上的最新工作:基于关键词且实现敏感信息隐藏的云数据完整性审计方案[1]。
自建迁移EMR实践案例
自建开源大数据平台会随着企业数据的增长遇到:性能慢、扩容周期长、平台稳定性差、运维难、投入成本高等问题。在这里我们将从 EMR 的简介、EMR与自建Hadoop对比优势、自建迁移上云的实践案例来介绍 EMR 是如何解决这些问题的。
搜狐智能媒体基于腾讯云大数据 EMR 的降本增效之路
2022年,搜狐智能媒体完成了迁移腾讯云的弹性计算项目,其中大数据业务整体都迁移了腾讯云,上云之后的整体服务性能、成本控制、运维效率等方面都取得了不错的效果,达到了预期的降本增效目标。
听说,难于上青天的云原生数据湖能开箱即用了?
导语 | 云原生数据湖架构以低成本优势推动客户上云,同时云上客户得以低成本撬动更多结构化和非结构化数据的价值,是一场云厂商的自我革命。本文由腾讯大数据专家工程师于华丽在 Techo TVP开发者峰会「数据的冰与火之歌——从在线数据库技术,到海量数据分析技术」的《云原生数据湖新一代数据架构》演讲分享整理而成,为大家详尽介绍云原生数据湖的价值和背景,云原生数据湖架构原则和挑战,同时分析腾讯云数据湖产品,展望腾讯云数据湖解决方案。 点击可观看精彩演讲视频
一、云原生数据湖架构的价值 今天分四个阶段来为大家
听说,难于上青天的云原生数据湖能开箱即用了?
导语 | 云原生数据湖架构以低成本优势推动客户上云,同时云上客户得以低成本撬动更多结构化和非结构化数据的价值,是一场云厂商的自我革命。本文由腾讯大数据专家工程师于华丽在 Techo TVP开发者峰会「数据的冰与火之歌——从在线数据库技术,到海量数据分析技术」的《云原生数据湖新一代数据架构》演讲分享整理而成,为大家详尽介绍云原生数据湖的价值和背景,云原生数据湖架构原则和挑战,同时分析腾讯云数据湖产品,展望腾讯云数据湖解决方案。 点击可观看精彩演讲视频
一、云原生数据湖架构的价值 今天分四个阶段来为大家
一面数据: Hadoop 迁移云上架构设计与实践
李阳良,一面数据大数据部门负责人,九年互联网工作经验,对后台开发、大数据技术接触比较多。
基于腾讯云EMR中的Hbase开发对接流程应用概述
HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是用来解决关系型数据库在处理海量数据时的局限性。
基于腾讯云EMR中的Hbase开发对接流程应用概述
HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是用来解决关系型数据库在处理海量数据时的局限性。
腾讯云官方课:EMR数仓全套教程重磅首发
这几天把跨年搞的和人生分水岭似的🤪
2023年的你有什么不一样了吗?
是不是还和去年一样的造型?
新姿(知)势(识),学起来
腾讯云开发者社区带着干货来了
腾讯云×尚硅谷大数据研究院强强联手
重磅推出新年第一弹
腾讯云EMR数仓教程发布
腾讯云开发者社区“公开课”直达:
https://mc.tencent.com/JLIcWlY0
扫码加入“腾讯云大数据EMR交流群”
免费获取全套教程
群内提供腾讯云官方大数据团队导师全程指导及技术交流
本教程由腾讯云官方与尚硅谷大数据研究院联合推出,分为实时
自建大数据平台迁移腾讯云EMR最佳实践
自建开源大数据平台会随着企业数据的增长遇到:性能慢、扩容周期长、平台稳定性差、运维难、投入成本高等问题。在这里我们将从 EMR 的简介、EMR与自建Hadoop对比优势、自建迁移上云的实践案例来介绍 EMR 是如何解决这些问题的。
自建大数据平台迁移腾讯云EMR最佳实践
自建开源大数据平台会随着企业数据的增长遇到:性能慢、扩容周期长、平台稳定性差、运维难、投入成本高等问题。在这里我们将从 EMR 的简介、EMR与自建Hadoop对比优势、自建迁移上云的实践案例来介绍 EMR 是如何解决这些问题的。
TwoSampleMR实战教程之计算并解读MR结果
在前几期的内容中,我和大家详细介绍了如何使用TwoSampleMR包读取暴露文件、去除存在连锁不平衡的SNP以及提取IV在结局中的信息,今天米老鼠将和大家介绍一下拿到数据后如何计算MR的结果并正确进行解读。
GooseFS助力大数据业务数倍提升计算能力
GooseFS是由腾讯云推出的一款分布式缓存方案,主要针对包括需要缓存加速的数据湖业务场景,提供基于对象存储COS服务的近计算端数据加速层。
EMR数据导入Snova云数仓
在数据仓库的建设中,通常我们使用Hive处理原始数据(PB级别),进行耗时较长的ETL工作,再将结果数据(TB级别)交由准实时的计算引擎(如Snova)对接BI工具,保证报表的准实时展现。
主流云平台介绍之-AWS
目前云平台逐渐火热起来,国内如:阿里云、腾讯云、华为云等平台,国外如:AWS、Azure、Google GCP等平台,都有不少用户,并在持续的增加中。
大数据计算加速论坛
背景介绍 4月23日09:00-12:45,在DataFunSummit2022:大数据计算架构峰会上,由腾讯云大数据资深高级工程师熊训德出品的大数据计算加速论坛,将邀请来自腾讯、阿里巴巴、矩阵起源、喜马拉雅的5位技术专家,就相关主题进行深度分享,欢迎大家一起探讨交流。
具体日程
详细介绍
出品人:熊训德 腾讯云 大数据资深高级工程师 个人介绍:四川大学硕士毕业后加入腾讯,在腾讯云大数据从事 hadoop 生态相关的云存储和计算等后台开发,专注于研究大数据、虚拟化和人工智能等相关技术。 嘉宾介绍:
大数据计算加速论坛
背景介绍 4月23日09:00-12:45,在DataFunSummit2022:大数据计算架构峰会上,由腾讯云大数据资深高级工程师熊训德出品的大数据计算加速论坛,将邀请来自腾讯、阿里巴巴、矩阵起源、喜马拉雅的5位技术专家,就相关主题进行深度分享,欢迎大家一起探讨交流。
具体日程
详细介绍
出品人:熊训德 腾讯云 大数据资深高级工程师 个人介绍:四川大学硕士毕业后加入腾讯,在腾讯云大数据从事 hadoop 生态相关的云存储和计算等后台开发,专注于研究大数据、虚拟化和人工智能等相关技术。 嘉宾介绍:
混合云存储:大数据应用的上云之道
企业数字化转型过程中,数据价值被显著放大,大数据应用成为不少企业探索的重点。
从技术上看,大数据业务由于数据体量大,且数据量很多时候呈急速膨胀状态;在进行大数据计算分析时,对资源的需求呈现浪涌式特征,又偶有突发性,因此通过上云充分发挥资源按需使用按需付费的优势,成为了不少企业在探索大数据应用时的常见模式。 这其中,企业在综合考量数据安全性、可扩展、可管理和成本效益等因素后,混合云部署的方式就成为了企业的主流选择。 近日,腾讯云存储高级产品经理贺永红在混合云主题论坛上发表演讲,详解了大数据应用上云的新
腾讯云基于Alluxio优化计算存储分离架构的最佳实践
|导语 随着企业大数据规模和应用的增长和发展,计算与存储分离的架构渐渐成为主流,它解决了计算量和存储量不匹配问题, 实现了算力的按需使用,但也引来了一些新的问题。腾讯云EMR团队与Alluxio社区合作,探索出了开箱即用的计算存储分离优化版本,大幅优化网络带宽,带宽削峰20%-50%,节省总带宽10%-50%,同时能在IO密集型场景提升性能5%-40%,下面就让我们来一探究竟。
一、当前大数据挑战 近年来,随着大数据规模的增长,以及大数据应用的发展,大数据技术的架构也在持续演进。早期的技术架构
在腾讯云 EMR 上使用 GooseFS 加速大数据计算服务
GooseFS 是腾讯云对象存储团队最新推出的高性能、高可用以及可弹性伸缩的分布式缓存系统,依靠对象存储(Cloud Object Storage,COS)作为数据湖存储底座的成本优势,为数据湖生态中的计算应用提供统一的数据湖入口,可加速基于腾讯云对象存储的各类海量数据分析以及机器学习等任务。本文将介绍如何在腾讯云 EMR 上使用 GooseFS 加速大数据计算任务。 GooseFS 是腾讯云对象存储团队近期面向下一代云原生数据湖场景推出的存储加速利器,提供与 HDFS 对标的 Hadoop Comp