无问西东 | 计算机科班小硕的秋招之路
背景为211本硕&计算机科班,无论文无实习,去年趁着暑假时间做了两个竞赛,名次top20这样子,研究生主要是做城市计算的,涉及到机器学习、深度学习、强化学习和图方面的一些算法和内容,导师不怎么管,所以这些理论知识基本都是自学的,其中强化学习是因为疫情在家,觉得开学要找工作了,只靠机器学习和深度学习估计没啥竞争力,所以硬着头皮把强化学习的理论给啃了下来,希望能添加点亮点;剑指offer在家刷了一遍,6月份开学开始刷leetcode,大概刷了150道左右吧,刷的题不是很多,所以后面面试考算法题不是特别顺利,笔试难点的公司基本挂掉。
隐私计算FATE-多分类神经网络算法测试
本文分享基于 Fate 使用 横向联邦 神经网络算法 对 多分类 的数据进行 模型训练,并使用该模型对数据进行 多分类预测。
ROC及AUC计算方法及原理「建议收藏」
在大多数情况下不同类别的分类代价并不相等,即将样本分类为正例或反例的代价是不能相提并论的。例如在垃圾邮件过滤中,我们希望重要的邮件永远不要被误判为垃圾邮件,还有在癌症检测中,宁愿误判也不漏判。在这种情况下,仅仅使用分类错误率来度量是不充分的,这样的度量错误掩盖了样本如何被错分的事实。所以,在分类中,当某个类别的重要性高于其他类别时,可以使用Precison和Recall多个比分类错误率更好的新指标。
ROC及AUC计算方法及原理「建议收藏」
在大多数情况下不同类别的分类代价并不相等,即将样本分类为正例或反例的代价是不能相提并论的。例如在垃圾邮件过滤中,我们希望重要的邮件永远不要被误判为垃圾邮件,还有在癌症检测中,宁愿误判也不漏判。在这种情况下,仅仅使用分类错误率来度量是不充分的,这样的度量错误掩盖了样本如何被错分的事实。所以,在分类中,当某个类别的重要性高于其他类别时,可以使用Precison和Recall多个比分类错误率更好的新指标。
计算与推断思维 十五、分类
机器学习是一类技术,用于自动寻找数据中的规律,并使用它来推断或预测。你已经看到了线性回归,这是一种机器学习技术。本章介绍一个新的技术:分类。
机器学习-04-分类算法-01决策树案例
本系列是机器学习课程的系列课程,主要介绍机器学习中分类算法,本篇为分类算法开篇与决策树部分。
大数据开发,如何发掘数据的关系?
网页之间链接关系蕴藏着网页重要性排序关系,购物车商品清单蕴藏着商品关联关系,通过对这些关系的挖掘,可帮助我们更清晰世界规律,并利用规律提高生产效率,改造世界。
使用k-近邻算法改进约会网站的配对效果--学习笔记(python3版本)
本文取自《机器学习实战》第二章,原始为python2实现,现将代码移植到python3,且原始代码非常整洁,所以这本书的代码很值得学习一下。