在人工智能这件事情上,马云走了一条与众不同的道路
随着人工智能在这些年的进展被AlphaGo显性化,它开始成为中外科技巨头布局的重点,甚至一些公司还将AI当做决定未来的战略。学术界同样十分重视人工智能技术,AlphaGo两次登陆顶级学术期刊《Natu
深度强化学习大牛、UC伯克利教授Pieter Abbeel获2021 ACM计算奖
机器之心报道 机器之心编辑部 AI 大牛吴恩达的学生、机器人学习专家、UC 伯克利教授 Pieter Abbeel 摘得了最新一届 ACM 计算奖的荣誉。 刚刚,ACM 官方宣布将 2021 ACM 计算奖(ACM Prize in Computing)授予加州大学伯克利分校教授 Pieter Abbeel,以表彰他在机器人学习方面的贡献,包括从演示中学习和用于机器人控制的深度强化学习。
在获奖公告中,ACM 提到:「Abbeel 率先教会机器人从人类演示中学习(学徒学习)和通过自己的反复试错学习(强化
【最新】如何降低深度强化学习研究的计算成本(Reducing the Computational Cost of DeepRL)
人们普遍认为,将传统强化学习与深度神经网络相结合的深度强化学习研究的巨大增长始于开创性的DQN算法的发表。这篇论文展示了这种组合的潜力,表明它可以产生可以非常有效地玩许多 Atari 2600 游戏的智能体。从那时起,已经有几种 方法建立在原始 DQN 的基础上并对其进行了改进。流行的Rainbow 算法结合了这些最新进展,在ALE 基准测试中实现了最先进的性能. 然而,这一进步带来了非常高的计算成本,不幸的副作用是扩大了拥有充足计算资源的人和没有计算资源的人之间的差距。
腾讯犀牛鸟精英人才培养计划课题介绍(一)——机器学习&量子计算
腾讯犀牛鸟精英人才培养计划是一项面向学生的校企联合培养方案,项目覆盖机器学习、量子计算、计算机视觉、语音技术、自然语言处理等产学研热点方向,入选学生将到腾讯开展科研访问,基于真实产业问题,借助腾讯海量数据、专家指导等资源,验证学术理论,加速成果应用转化,全面提升自身科研能力和综合素质。 2018年度申请时间已经过半,小伙伴们要抓紧哦~ 今年共有8个课题方向,54个子课题供大家选择,总有一款适合你! 课题方向及导师介绍请持续关注系列推送 机器学习及其相关应用研究 1.1 用户行为时间序列分析及建模 利用
腾讯犀牛鸟精英人才培养计划课题介绍(一)——机器学习&量子计算
腾讯犀牛鸟精英人才培养计划是一项面向学生的校企联合培养方案,项目覆盖机器学习、量子计算、计算机视觉、语音技术、自然语言处理等产学研热点方向,入选学生将到腾讯开展科研访问,基于真实产业问题,借助腾讯海量数据、专家指导等资源,验证学术理论,加速成果应用转化,全面提升自身科研能力和综合素质。 2018年度申请时间已经过半,小伙伴们要抓紧哦~ 今年共有8个课题方向,54个子课题供大家选择,总有一款适合你! 课题方向及导师介绍请持续关注系列推送 机器学习及其相关应用研究 1.1 用户行为时间序列分析及建模 利用
Nat Mach Intell|GPU计算和深度学习在药物发现中的变革作用
2022年3月23日,来自哥伦比亚大学的Artem Cherkasov和英伟达的Abraham C等人在Nature Machine Intelligence杂志发表文章,全面阐述了GPU计算和深度学习的历史趋势和最新进展,并讨论了它们对药物发现的直接影响。
业界 | 腾讯AI Lab获得计算机视觉权威赛事MSCOCO Captions冠军
机器之心发布
机器之心编辑部
2017 年 8 月,在图像描述生成技术这一热门的计算机视觉与 NLP 交叉研究领域,腾讯 AI Lab 凭借自主研发的强化学习算法在微软 MS COCO 相关的 Ima
一文梳理隐私计算/联邦学习推荐系统研究进展
推荐系统,对于我们来说并不陌生,它已经无时无刻不方便着我们的生活、学习、工作等方方面面,并且已经成为许多社交/购物/新闻平台中必不可少的组件。近些年来学术界以及工业界的研究者们已经对其进行了大量研究并提出了许多经典有效的推荐模型,比如UserCF、ItemCF、MF、FM、BPR、Item2vec、NCF、DIN等等。
基于腾讯云TKE的大规模强化学习实践
| 导语 大规模的强化学习需要海量的异构计算资源,批量快速启停训练任务,高频更新模型参数,跨机跨进程共享模型数据等。传统的手工管理模式操作繁琐,面临诸多不确定性,带来的各种挑战无法支撑大规模强化学习的场景。本文介绍了腾讯内部某业务基于 TKE 构建大规模强化学习解决方案,以及与传统手工模式对比该方案带来的优势。
无问西东 | 计算机科班小硕的秋招之路
背景为211本硕&计算机科班,无论文无实习,去年趁着暑假时间做了两个竞赛,名次top20这样子,研究生主要是做城市计算的,涉及到机器学习、深度学习、强化学习和图方面的一些算法和内容,导师不怎么管,所以这些理论知识基本都是自学的,其中强化学习是因为疫情在家,觉得开学要找工作了,只靠机器学习和深度学习估计没啥竞争力,所以硬着头皮把强化学习的理论给啃了下来,希望能添加点亮点;剑指offer在家刷了一遍,6月份开学开始刷leetcode,大概刷了150道左右吧,刷的题不是很多,所以后面面试考算法题不是特别顺利,笔试难点的公司基本挂掉。
解读 | 2019年10篇计算机视觉精选论文(上)
2019 年转眼已经接近尾声,我们看到,这一年计算机视觉(CV)领域又诞生了大量出色的论文,提出了许多新颖的架构和方法,进一步提高了视觉系统的感知和生成能力。因此,我们精选了 2019 年十大 CV 研究论文,帮你了解该领域的最新趋势。
解读 | 2019 年 10 篇计算机视觉精选论文(上)
内容一览:2019 年转眼已经接近尾声,我们看到,这一年计算机视觉(CV)领域又诞生了大量出色的论文,提出了许多新颖的架构和方法,进一步提高了视觉系统的感知和生成能力。因此,我们精选了 2019 年十大 CV 研究论文,帮你了解该领域的最新趋势。
Nat. Com. Sci. | 计算设计可合成分子
设计新分子有许多重要的应用,跨越不同的科学领域。例如,新药研发就是其中的一种应用,在这种应用中,可以创造新的分子来作用于疾病的潜在靶点。新分子也可以被设计成新材料,以应对科学界面临的各种技术挑战,包括可再生能源的开发和更高效电池的实施。
研究生往边缘计算方向走,需要哪些基础?
近期很多朋友在边缘计算社区后台留言咨询研究生往边缘计算方向走,该做那些准备之类的问题,然而一百个人有一百种想法,大家看法都不一样。为此,我们邀请国内比较活跃的几个边缘计算相关高校团队来一起回答这些问题。
研究生往边缘计算方向走,需要哪些基础?
近期很多朋友在边缘计算社区后台留言咨询研究生往边缘计算方向走,该做那些准备之类的问题,然而一百个人有一百种想法,大家看法都不一样。为此,我们邀请国内比较活跃的几个边缘计算相关高校团队来一起回答这些问题。
量子+AI:量子计算加速机器学习
量子计算和机器学习都是当前最炙手可热的研究领域。在量子计算方面,理论和硬件的一个个突破性进展让人们看到大规模通用量子计算机的脚步越来越近。在机器学习方面,具备机器学习能力的人工智能在某些方面的能力远超人类。
情感计算:让机器更加智能
在人们的认知中,机器与人的分界线是机器是否具有情感。举个例子,如果一对情侣吵架,而有一方显得过于冷漠,那么另一方很有可能向对方说出类似于「你是一个没有情感的机器」的话。因此,机器是否具有情感是机器人性化程度高低的关键因素之一。
随机计算图:连续案例
本译文自Artem sobolev 在http://artem.sobolev.name 发表的Stochastic Computation Graphs: Continuous Case。文中版权、
【计算摄影】计算机如何学会自动地进行图像美学增强?
大家好,这是专栏《计算摄影》的第四篇文章,这一个专栏来自于计算机科学与摄影艺术的交叉学科。今天我们讨论的问题是如何学会做图像增强。
【计算摄影】计算机如何学会自动地进行图像美学增强?
大家好,这是专栏《计算摄影》的第四篇文章,这一个专栏来自于计算机科学与摄影艺术的交叉学科。今天我们讨论的问题是如何学会做图像增强。