FLiCR:基于有损 RI 的快速轻量级激光雷达点云压缩
文章:FLiCR: A Fast and Lightweight LiDAR Point Cloud Compression Based on Lossy RI
实时的激光雷达点云压缩
标题:Real-Time Spatio-Temporal LiDAR Point Cloud Compression
实时的激光雷达点云压缩
标题:Real-Time Spatio-Temporal LiDAR Point Cloud Compression
点云压缩研究进展与趋势
以激光扫描为代表的主动采集装备在易操作性、机动灵活性、智能化、高效化等方面日益成熟,利用三维成像技术采集密集点的空间坐标、色彩纹理和反射强度等信息,可高保真且快速重建被测目标的三维实体,在工程测量、生物医学、智慧城市、虚拟现实(VR)、增强现实(AR)等科学与工程研究中发挥十分重要的作用[1-4]。
基于学习的点云残差编码
最近,沉浸式媒体的呈现模态受到越来越多的关注,点云是其中的重要代表。然而,点云时常包含超过数百万个点,这增加了对高效压缩解决方案的需求。近来,深度学习用于点云压缩被不断研究,并成为点云压缩的重要工具,尤其是其较好的结果引起了编码社区的兴趣。然而,迄今为止提出的大多数解决方案都不支持可伸缩编码。
点云压缩研究进展与趋势
三维点云为物理世界精细数字化提供了高精度的三维表达方式,广泛应用于三维建模、智慧城市、自主导航系统、增强现实等领域。然而点云的数据海量、非结构化、密度不均等特点给点云的存储和传输带来了巨大挑战,因此在有限的存储空间容量和网络传输带宽中实现低比特率、低失真率的点云压缩具有重要的理论意义和实用价值。
开源点云实时压缩方案测试
上周在一篇共享的开源的方案中我们介绍了理论的研究部分,处于好奇,本人决定亲自测试一下该开源的方案,虽然了解PCL的同学应该都知道,该开源库中也有关于点云的压缩和解压的研究,效果也很好。在之前的博客中,我们有过介绍,将来如果有机会更加可以继续深入解析其中的理论以及代码部分,这里我们首先来学习一下这一优秀的开源代码。首先介绍一下这篇文章《Real-Time Spatio-Temporal LiDAR Point Cloud Compression》